Sauer's Bound for a Notion of Teaching Complexity

نویسندگان

  • Rahim Samei
  • Pavel Semukhin
  • Boting Yang
  • Sandra Zilles
چکیده

This paper establishes an upper bound on the size of a concept class with given recursive teaching dimension (RTD, a teaching complexity parameter.) The upper bound coincides with Sauer’s well-known bound on classes with a fixed VC-dimension. Our result thus supports the recently emerging conjecture that the combinatorics of VC-dimension and those of teaching complexity are intrinsically interlinked. We further introduce and study RTD-maximum classes (whose size meets the upper bound) and RTD-maximal classes (whose RTD increases if a concept is added to them), showing similarities but also differences to the corresponding notions for VC-dimension. Another contribution is a set of new results on maximal classes of a given

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring EFL Learners’ Use of Formulaic Sequences in Pragmatically Focused Role-play Tasks

Communicative language use largely entails regular patterns consisting of pre-constructed phrases or sequences. These sequences have been examined by many researchers to find the situation-based formulas which may help L2 learners follow a possibly more target-like speaking system. This study, therefore, explored two categories of formulaic expressions including speech formulas and situation-bo...

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

Teaching-Learning approach in complexity paradigm

"Teaching-Learning Approach" is a model of interaction between teachers and students in an educational environment and one of the main components of the educational system. This model can be organized and designed on the basis of various opinions and ideas, including philosophical or scientific theories. This research aims to design and explain teaching-learning approach based on the complexity...

متن کامل

Open Problem: Recursive Teaching Dimension Versus VC Dimension

The Recursive Teaching Dimension (RTD) of a concept class C is a complexity parameter referring to the worst-case number of labelled examples needed to learn any target concept in C from a teacher following the recursive teaching model. It is the first teaching complexity notion for which interesting relationships to the VC dimension (VCD) have been established. In particular, for finite maximu...

متن کامل

A Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs

An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012